Readout Electronics Radiation Tolerance in the Forward Region

CERN, 16 March 2004 Luciano Musa - CERN / PH - ED

TPC FE AND READOUT ELECTRONICS

Each of the 36 TPC Sectors is served by 6 Readout Partitions

TPC Front End Card

TPC Readout Partition

FEC – RCU Aseembly

16 March 2004

FMD READOUT AND CONTROL ELECTRONICS

FMD digitizer card based on the TPC FEC

RADIATION SENSITIVE COMPONENTS

Luciano Musa / CERN - PH

Single Event Upset (SEU)

- High-energetic hadrons induce nuclear reactions in the silicon (E > 20 MeV - protons, neutrons, pions, kaons)
- Intermediate energy neutrons (2 MeV < E < 20 MeV) contribute little (10%) to SEUs
- (Almost) no effect due to thermal neutrons
- Heavy recoil ions from reactions ionise the material
- Protons do not deposit enough charge deposited by direct ionisation to cause a SEU
- Charge deposition leads to a change in state of a transistor (SEU)
- Soft error can be corrected (rewriting or reprogramming)

SEU Protection

- Finite State Machine (FSM) protected by Hamming encoding
 - Basic principle

Irradiation Facilities at UCL Cyclotron

Test at UCL, Louvain-la-Neuve, Belgium Beam Type: 65 MeV protons Proton Flux: 1·10⁸ , 5·10⁸ p cm⁻² s⁻¹ 100 krad in 30 min at this flux

Irradiation Facilities at OSLO Cyclotron

Oslo Cyclotron

29 MeV external proton beam

beamspot 1 x 1cm

beam intensities > 10pA (flux : 0.6x10^8 protons/s cm²)

beam distribution made uniform by defocusing and using a gold foil placed upstream in beampath.

FEC tested parts

Name	Туре І	No. Parts	Max. Dose (krad)	Test Method
ALTRO-16	CMOS	10	> 312	dynamic
MIC39151 (LDO) 🕆	Bipolar	20	30	dynamic
MIC29371 (LDO) 🕂	Bipolar	20	30	dynamic
GTL16612	Bi-CMOS	10	> 100	dynamic
MPC9109	CMOS	10	> 100	dynamic
OPA4364 🕆	Bipolar	10	> 30	dynamic
LM4040 🕆	Bipolar	10	> 30	dynamic
ACEX1K30	CMOS	10	> 100	dynamic
EPC1441	CMOS	8	> 10	powered
Electrolytic Cap	Tantalum	20	> 100	powered

Part malfunction at mentioned dose

ALICE dose over 10 years is 3 krad

ALTRO Radiation Test Results

Error Cross Section

Memory Error Cross Section:1.10.10^{-14} cm^{-2} bit^{-1}Register Error Cross Section:7.02.10^{-14} cm^{-2} bit^{-1}Hamming Error Cross Section:9.50.10^{-14} cm^{-2} bit^{-1}

bit-flip ratio

Digital current vs Dose

Observations

- Slightly more flips from 1 to 0 than from 0 to 1
- Digital current increases with dose (leakage increases)
- Analog current stays the same
- ADC bit flips very rare
- Small spikes in analog part of ADC above 160 krad

ALTRO Radiation Test Results

Annealing

- After 2 weeks at room temperature: 43 mA standby current (+13.5% over total)
- After 3 months at room temperature: back to normal
- At a low flux, annealing and damage may compensate

All 4 irradiated chips continue to work today

For an FMD Digitizer Card equipped with 3 ALTROs

	Registers	Pedestal Memory	Data Memory	Hamming Machines
SEU per hour	3.45•10 ⁻⁵	5.4•10 ⁻⁴	2.1•10 ⁻³	1.05•10 ^{-₄}
MTBF	1200 days	77 days	20 days	397 days

Regulator Test Results

MIC39151 died after 30 krad (switch-off still possible)

MIC39151 still usable for the TPC. Batch dispersion might be an issue

Upset detection in ALTERA FPGAs

Two types of concern

- . Upsets in configuration SRAM cells
- . Single bit-flips in register elements (can be avoided by design)

The APEX20K400E offers no direct readout of configuration SRAM . Indirectly detection of configuration upset through the internal logic

Error observed reflects a change in logic due to a configuration upset, and not the configuration upset itself

Upset detection in ALTERA FPGAs

A fixed pattern is shifted through and compared for setups when read out.

Cross Section Results

Particle $E > 10 MeV$	Fluence [cm ⁻²] per 10 ALICE years	Fluence [cm ⁻²] per 10 ALICE years
	(Simulation 1, non- absorber & absorber side)	(Simulation 2, incl. absorber side)
Protons	6×10^8 3×10^8	8.6 x 10 ⁸
Pions, kaons	3.5 x 10 ⁹ 1.5 x 10 ⁹	1.4 x 10 ⁹
Neutrons (5%)	$1.9 \times 10^9 5 \times 10^9$	$\approx 10^{10}$? tbc

Particle	Flux [sec ⁻¹ cm ⁻²]	Flux [sec ⁻¹ cm ⁻²]
E > 10 MeV	(Simulation 1)	(Simulation 2)
Protons	24 13	34
Pions, kaons	140 60	56
Neutrons (5%)	76 206	450? tbc

Error estimates per run

High Energetic Hadron Flux (@ TPCin): 250 - 550 hadrons / sec · cm²

	Error rate per run (4 hours) per device
FEC	3•10-4
RCU	1.5•10 ⁻²
DCS	3•10 ⁻²

- > ALTRO chip
 - TID > 300krad
 - SEU: Control Logic is SEU free, Memories cross section too small to be a concern at the projected ALICE particle flux
- > FMD Digitizer (based on TPC FEC components)
 - TID ~ 30krad
 - SEU (@ 500 hadrons / cm²·s) failure rate per run (4hours) per device ~ 3x10⁻⁴
- FMD Digitizer (modified version based on CMOS LDOs and antifuse FPGA)
 - TID > 100 krad
 - SEU free

Conclusions (2)

> RCU (TPC actual version)

- TID ~ 30krad
- SEU (@ 500 hadrons / cm² s) failure rate per run (4hours) per device ~ 5x10⁻²